Syris Documentation

Tomas Farago

May 18, 2022

Contents:

1 Application Programming Interface

I.1 0 Syris Configuration o o o i e e e e e e e e e e e e e e e e e e
1.2 Image Processing e e e
1.3 Geometry o e e e e e e e e e e e
1.4 Materials e e e e
1.5 Optical Elements o o i e e e e e e e e e e e e e e e e e e
1.6 Math e e
L7 PhySIiCS . . o o o i e e e e e e e e e e e
1.8 EXperiments o i it e e e e e e e e e e e e e e e e e
1.9 Bodies e e
L10 DEVICES .« o v v o v o e
L1.11 OpenCL GPU UHtES o o it e
2 Usage
2.1 Profiling GPU Code e
22 Exampleso e e e

3 Indices and tables
Python Module Index

Index

000 J OB —

27

29

31

CHAPTER 1

Application Programming Interface

1.1 Syris Configuration

1.1.1 Initialization

Synchrotron Radiation Imaging Simulation (SYRIS) initialization.

syris.init (platform_name=None, device_type=None, device_index=None, profiling=False, profil-
ing_file="profile.dat’, loglevel=20, logfile=None, double_precision="False)
Initialize syris with device_index.

1.1.2 Initialization routines and global variables

OpenCL, logging and precision configuration. This module also defines global variables which hold the configuration
objects for precision and OpenCL. Furthermore, pmasf path is specified here and caching policy for data as well.

class syris.config.OpenCL
OpenCL runtime information holder.

class syris.config.Precision (double=False)
A precision object holds the precision settings of the floating point and complex numpy and OpenCL data types.
If double is True, double precision is used.

is_single(()
Return True if the precision is single.

set_precision (double)
If double is True set the double precision.

syris.config.init_logging (level=10, logger_file=None)
Initialize logging with output to logger_file.

Syris Documentation

1.2 Image Processing

Module for GPU-based image processing.

class syris.imageprocessing.Tiler (shape, tiles_count, outlier=True, supersampling=1,

cplx=False)
Class for breaking images into smaller tiles.

average (tile, out=None)

Average pyopencl.array.Array tile based on supersampling and outlier specified for the tiler. If
out is not None, it will be used for returning the sum.

insert (tile, indices)
Insert a non-supersampled, outlier-free file into the overall image. indices (y, x) are tile indices in the
overall image.

result_tile_shape
Result tile shape without outlier and supersampling.

tile_indices
Get the supersampled tile indices which are starting points of a given tile in (y, x) fashion.

tile_shape
Get the supersampled tile shape based on tile counts tile_counts as (y, X) and shape (y, X).

syris.imageprocessing.bin_image (image, summed_shape, offset=(0, 0), average=False,
out=None, queue=None, block=False)
Bin an image. The resulting buffer has shape summed_shape (y, x). Offset (y, x) is the offset to the original
image. summed_shape has to be a divisor of the original shape minus the offset. If average is True, the summed
pixel is normalized by the region area. out is the pyopencl Array instance, if not specified it will be created. out
is also returned. If block is True, wait for the copy to finish.

syris.imageprocessing.blur_with_gaussian (image, sigma, queue=None, block=False)
Blur image with a gaussian kernel, where sigma is the standard deviation. Use command queue, if block is True,
wait for the copy to finish.

syris.imageprocessing.crop (image, region, out=None, queue=None, block=False)
Crop a 2D image. region is the region to crop as (y_0, x_0, height, width), out is the pyopencl Array instance,
if not specified it will be created. out is also returned. If block is True, wait for the copy to finish.

syris.imageprocessing.decimate (image, shape, sigma=None, average=False, queue=None,

block=False)
Decimate image so that its dimensions match the final shape, which has to be a divisor of the original shape.

Remove low frequencies by a Gaussian filter with sigma pixels. If sigma is None, use the FWHM of one low
resolution pixel. Use command queue, if block is True, wait for the copy to finish.

syris.imageprocessing.fft_2 (data, queue=None, block=True)
2D FFT executed on data. block specifies if the execution will wait until the scheduled FFT kernels finish. The

transformation is done in-place if data is a pyopencl Array class and has complex data type, otherwise the data
is converted first.

syris.imageprocessing.get_gauss_2d (shape, sigma, pixel_size=1, fourier=False, queue=None,

block=False)
Get 2D Gaussian of shape with standard deviation sigma and pixel_size. If fourier is True the fourier transform

of it is returned so it is faster for usage by convolution. Use command queue if specified. If block is True, wait
for the kernel to finish.

syris.imageprocessing.get_num_tiles (tiles, num_tiles=None)
Determine number of tiles in the tiles list.

2 Chapter 1. Application Programming Interface

Syris Documentation

syris.imageprocessing.ifft_2 (data, queue=None, block=True)
2D inverse FFT executed on data. block specifies if the execution will wait until the scheduled FFT kernels
finish. The transformation is done in-place if data is a pyopencl Array class and has complex data type, otherwise
the data is converted first.

syris.imageprocessing.make_tile_offsets (shape, tile_shape, outlier=(0, 0))
Make tile offsets in pixels so that one tile has file_shape and all tiles form an image of shape. outlier specifies
the the overlap of the tiles, so if the outlier width is m, the tile overlaps with the previous and next tiles by m / 2.
If the tile width is n, the tile must be cropped to (m /2, n - n/ 2) before it can be placed into the resulting image.
This is convenient for convolution outlier treatment.

syris.imageprocessing.make_tiles (func, shape, tile_shape, iterable=None, outlier=(0, 0),

queues=None, args=(), kwargs=None)
Make tiles using func which can either have signature func(item, args, **kwargs) or func(item, queue, *args,

**kwargs), where queue is the OpenCL command queue. In the latter case, multiple command queues are
mapped to different computation items. *shape (y, X) is the final image shape, tile_shape (y, X) is the shape of one
tile, iterable is the sequence to be mapped to func, if not specified, the offsets from make_tile offsets ()
are used. outlier (y, x) is the amount of overlapping region between tiles, queues are the OpenCL command
queues to use, args and kwargs are additional arguments passed to func. Returns a generator.

syris.imageprocessing.merge_tiles (tiles, num_tiles=None, outlier=(0, 0))
Merge tiles which is a list to one large image. num_tiles is a tuple specifying the number of tiles as (y, x) or
None, meaning there is equal number of tiles in both dimensions. The tiles must be stored in the row-major
order.

syris.imageprocessing.pad (image, region=None, out=None, value=0, queue=None, block=False)
Pad a 2D image. region is the region to pad as (y_0, x_0, height, width). If not specified, the next power of two
dimensions are used and the image is centered in the padded one. The final image dimensions are height x width
and the filling starts at (y_0, x_0), out is the pyopencl Array instance, if not specified it will be created. out is
also returned. value is the padded value. If block is True, wait for the copy to finish.

syris.imageprocessing.rescale (image, shape, sampler=None, queue=None, out=None,

block=False)
Rescale image to shape and use sampler which is a pyopencl. Sampler instance. Use OpenCL gueue and

out pyopencl Array. If block is True, wait for the copy to finish.

syris.imageprocessing.varconvolve (kernel_name, shape, kernel_args, local_size=None, pro-

gram=None, queue=None, block=False)
Variable convolution with OpenCL kernel function kernel_name, gloal size shape (y, x), kernel arguments ker-

nel_args, work group size local_size (can be None, i.e. OpenCL will determine it automatically), OpenCL
program (can be None in which case the default syris variable convolution program is used with all predefined
kernels). queue is the command queue, if block is True wait for the kernel to finish. Return OpenCL event from
the kernel execution.

(f*g)(x,y)=/jo /jO flz,y,&,m)g(x — &y —n)dsdn

syris.imageprocessing.varconvolve_disk (image, radii, normalized=True, smooth=True, sam-

pler=None, queue=None, out=None, block=False)
Variable convolution of input image with an elliptical disk with y and x radii. radii specify the convolution

kernel disk y and x radius for every output point. They are specified as two 2D arrays and can be either a tuple
of two 2D arrays or a pyopencl.array.Array instance with vfloat2 data type, meaning both 2D arrays are encoded
in it. If normalized is True the convolution kernel sum is always 1. Use OpenCL sampler, command queue, out
as output and wait for execution end if block is True. Convolution window is always odd-shaped and the middle
pixel is set to 0. This means that if the radii are smaller numbers than 1, the convolution returns the original
image. This has a consequence that it is not possible to create a disk with even number of pixels accross one
of the principal axes, so the disk radius will be exact from the middle if you specify it in half pixels, e.g. if the
radius is 1.5, then pixels [-1, 0, 1] will be selected, i.e. the disk diameter is 3 pixels.

1.2. Image Processing 3

Syris Documentation

syris.imageprocessing.varconvolve_gauss (image, sigmas, normalized=True, sampler=None,

queue=None, out=None, block=False)
Variable convolution of input image with a Gaussian with y and x sigmas. sigmas specify the convolution kernel

y and x sigmas for every output point. They are specified as two 2D arrays and can be either a tuple of two
2D arrays or a pyopencl.array.Array instance with vfloat2 data type, meaning both 2D arrays are encoded in it.
If normalized is True the convolution kernel sum is always 1. Use OpenCL sampler, command qgueue, out as
output and wait for execution end if block is True. Convolution window is always odd-shaped and the middle
pixel is set to 0. This means that if the sigmas are smaller numbers than 1, the convolution returns the original
image.

1.3 Geometry

Geometrical operations from primitive mathematical routines like rotation and translation to complex motion descrip-
tion by a spline-based Tra jectory class. BoundingBox used to constraint physical bodies is defined here as
well.

All the transformation operations are in the backward form, which means if the order of operations is: A = trans_1 B
= trans_2 C = trams_3, then in the forward form of the resulting transformation matrix would be T = ABC yielding
x’ = ABCx = Tx. Backward form means that we calculate the matrix in the form TA{-1} = CM-1}BA-1}A*-1} =
(ABC)"M{-1}. Thus, we can easily obtain x = TA{-1}x’.

class syris.geometry.BoundingBox (points)
Class representing a graphical object’s bounding box.

get_max (axis=0)
Get maximum along the specified axis.

get_min (axis=0)
Get minimum along the specified axis.

get_projected_points (axis)
Get the points projection by releasing the specified axis.

merge (other)
Merge with other bounding box.

overlaps (other)
Determine if the bounding box XY-projection overlaps XY-projection of other bounding box.

points
The object border points.

roi
Return range of interest defined by the bounding box as (y_0, x_0, y_1, x_1).

class syris.geometry.Trajectory (control_points, pixel_size=None, furthest_point=None,
time_dist=None, velocity=None, num_points=None)
Class representing object’s trajectory.
Trajectory is a spline interpolated from a set of points.

bind (pixel_size=None, furthest_point=None)
Bind the trajectory to a pixel_size to make sure two positions are not more than pixel_size apart between
two time points. furthest_point is the furthest point from a body center used to compute rotational dis-
placement and it can be None.

bound
Return True if the trajectory is currently bound.

4 Chapter 1. Application Programming Interface

Syris Documentation

control_points
Control points used by the trajectory.

furthest_point
Furthest point for which the trajectory is interpolated.

get_direction (abs_time, norm=True)
Get direction of the trajectory at the time abs_time. It is the derivative of the trajectory at abs_time. If
norm is True, the direction vector will be normalized.

get_distances (u=None, u_0=None)
Get the distances from the trajectory beginning to every consecutive point defined by the parameter.

get_maximum_dt (distance=None)
Get the maximum time difference which moves the object no more than distance. If distance is None the
pixel size this trajectory is bound to is used. Consider both rotational and translational displacement.

get_maximum_du (distance=None)
Get the maximum parameter difference which moves the object no more than distance. If distance is None
the pixel size this trajectory is bound to is used. Consider both rotational and translational displacement.

get_next_time (1_0)
Get time from ¢_0 when the trajectory will have travelled more than pixel size.

get_parameter (abs_time)
Get the spline parameter from the time abs_time.

get_point (abs_time)
Get a point on the trajectory at the time abs_time.

length
Trajectory length.

pixel_size
Pixel size for which the trajectory is interpolated.

points
Return interpolated points.

stationary

Return True if the trajectory is stationary.
time

Total time needed to travel the whole trajectory.

time_tck
The tck tuple of scipy.interpolate.splrep () for time-distance spline.

times
Return the time points for which the distance is defined.

exception syris.geometry.TrajectoryError
Exceptions related to trajectory.

syris.geometry.angle (vec_0, vec_I)
Angle between vectors vec_0 and vec_I. The vectors might be 2D with 0 dimension specifying (X, y, z) compo-
nents.

syris.geometry.closest (values, min_value)
Get the minimum greater value min_value from values.

1.3. Geometry 5

Syris Documentation

syris.geometry.derivative_ fit (tck, u, max_distance)
Reinterpolate curve in a way that all the f” * du are smaller than max_distance. The original spline is given by
tck and parameter u.

syris.geometry.get_rotation_displacement (d_0,d_I, length)
Return the displacement of a sphere with radius length caused by rotation around vectors d_0 and d_I. The
displacement is returned for every axis (X, y, z).

syris.geometry.interpolate_1d (x_0,y_0, size)
Interpolate function y = f(x) with x_0, y_0 as control points and return the interpolated x_1 and y_1 arrays of
size.

syris.geometry.is_normalized (vector)
Test whether a vector is normalized.

syris.geometry.length (vector)
Get length of a vector.

syris.geometry.make_points (x_ends,y_ends, z_ends)
Make 3D points out of minima and maxima given by x_ends, y_ends and z_ends.

syris.geometry.maximum_derivative_parameter (fck, u, max_distance)
Get the maximum possible du, for which holds that dx < max_distance.

syris.geometry.normalize (vector)
Normalize a vector.

syris.geometry.overlap (interval_0, interval_I)
Check if intervals interval_0 and interval_I overlap.

syris.geometry.reinterpolate (tck, u, n)
Arc length reinterpolation of a spline given by fck and parameter u to have n data points.

syris.geometry.rotate (phi, axis, shift=None)
Rotate the object by phi around vector axis, where shift is the translation which takes place before the rotation
and -shift takes place afterward, resulting in the transformation TRT”-1. Rotation around an arbitrary point in
space can be modeled in this way. The angle is _always_ rescaled to radians.

syris.geometry.scale (scale_vec)
Scale the object by scaling coefficients (kx, ky, kz) given by sc_vec.

syris.geometry.transform vector (frans_matrix, vector)
Transform vector by the transformation matrix trans_matrix with dimensions (4,3) width x height.

syris.geometry.translate (vec)
Translate the object by a vector vec. The vector is _always_ transformed into meters.

1.4 Materials

Sample material represented by a complex refractive index.

class syris.materials.Material (name, refractive_indices, energies, f_I=None, f_2=None)
A material represented by its name and refractive_indices calculated for energies.

energies
energies for which the complex refractive index was calculated.

get_attenuation_ coefficient (energy)
Get the linear attenuation coefficient at energy.

6 Chapter 1. Application Programming Interface

Syris Documentation

get_refractive_index (energy)
Interpolate refractive indices to obtain the one at energy.

name
Material name.

refractive_indices
Get complex refractive indices (delta [phase], ibeta [absorption]) for all energies used to create the material.

save (filename=None)
Save this instance to a filename.

exception syris.materials.MaterialError

Material errors

syris.materials.make_fromfile (filename)

Load saved material from filename.

syris.materials.make_henke (name, energies, formula=None, density=None)

Use the https://henke.Ibl.gov database to lookup a material name for energies, use the specified chemical formula
and density.

syris.materials.make_pmasf (name, energies)

Make a material based on the PMASF program.
* name - compund name defined in “compound.dat”
* energies - list of energies which will be taken into account [keV]
* steps - number of intervals between the energies

Return a list of refractive indices.

syris.materials.make_stepanov (name, energies, density=None, formula=None, crystal=None)

Use the https://x-server.gmca.aps.anl.gov database to lookup a material name for energies, use the specified
chemical formula and density.

1.5 Optical Elements

Optical Elements are entities capable of producing wavefields as a function of time.

class syris.opticalelements.OpticalElement

An optical element capable of producing a wavefield as a function of time.

get_next_time (7_0, distance)
Get next time at which the object will have traveled distance, the starting time is ¢_0.

transfer (shape, pixel_size, energy, exponent=False, offset=None, t=None, queue=None, out=None,

check=True, block=False)
Transfer function of the element in real space on an image plane of size shape, use pixel_size, energy, offset

is the physical spatial offset of the element as (y, x), transfer at time ¢. If exponent is true, compute the
exponent of the transfer function without applying the wavenumber. Use queue for OpenCL computations
and out pyopencl array. If block is True, wait for the kernel to finish. If check is True, the function is
checked for aliasing artefacts.

transfer_fourier (shape, pixel_size, energy, t=None, queue=None, out=None, block=False)
Transfer function of the element in Fourier space of size shape, use pixel_size, energy and comput the
function at time 7. Use queue for OpenCL computations and out pyopencl array. If block is True, wait for
the kernel to finish.

1.5.

Optical Elements 7

https://henke.lbl.gov
https://x-server.gmca.aps.anl.gov

Syris Documentation

1.6 Math

Math helper functions.

syris.math.closest (values, min_value)
Get the minimum greater value greater than min_value from values.

syris.math.difference_root (x_0, tck, y_d)
Given a function f(x) = y, find 21 for which holds |f(z1) — f(xo)| = ya4. x_0 is the starting x¢ and f(z) is
defined by spline coefficients tck.

syris.math.f£ftfreq (n, pixel_size)
Compute spatial frequencies for a 2D grid (n, n) with spacing pixel_size. Returns spatial frequencies f as (f_y,
f x).

syris.math.fwnm to_sigma (fwnm, n=2)
Return Gaussian sigma from full width at n-th maximum fivnm.

syris.math.get_surrounding_points (points, threshold)
Get the closest points around a threshold from both sides, left and right. If one of the sides is empty than None
is returned on its place.

syris.math.infimum (x_0, data)
Return the greatest point from data which is less than x_0.

syris.math.match_range (x_points, y_points, x_target)
Match the curve f(x) = y to x_target points by interpolation of x_points and y_points.

syris.math.sigma_to_fwnm (sigma, n=2)
Return Gaussian full width at n-th maximum given by sigma and n.

syris.math.supremum (x_0, data)
Return the smallest point from data which is greater than x_0.

1.7 Physics

Physics on the light path.

syris.physics.compute_aliasing_limit (n, wavelength, pixel_size, propagation_distance,
fov=None, fourier=True)
Get the non-aliased fraction of data points when propagating a wavefield to a region n X pizel_size to propa-
gation_distance using wavelength, pixel_size and field of view fov (if not specified computed as n * pixel_size).
If fourier is True then the limit is computed for the Fourier space.

syris.physics.compute_collection (num_aperture, opt_ref_index)
Get the collection efficiency of the scintillator combined with a lens. The efficiency is given by n = % (NT:L‘) ,
where NA is the numerical aperture num_aperture of the lens, n is the optical refractive index opt_ref_index

given by the Scintillator.

syris.physics.compute_diffraction_angle (diameter, propagation_distance)
Compute the diffraction angle for a region where a wavefield within the diameter can interfere on a propaga-
tion_distance.

syris.physics.compute_propagation_distance_limit (n, wavelength, pixel_size)
Compute the propagation distance which just fits the sampling theorem for n pixels, wavelength and pixel_size.

syris.physics.compute_propagation_sampling (wavelength, distance, fov, fresnel=True)
Compute the required number of pixels and pixel size in order to satisfy the sampling theorem when propagating
a wavefield with wavelength to distance and we want to propagate field of view fov. If fresnel is true, the same

8 Chapter 1. Application Programming Interface

Syris Documentation

distance computation approximation is done as when computing a Fresnel propagator (2nd order Taylor series
expansion for the square root).

syris.physics.compute_propagator (size, distance, lam, pixel_size, fresnel=True, region=None,
apply_phase_factor=False, mollified=True, queue=None,

block=False)
Create a propagator with (size, size) dimensions for propagation distance, wavelength lam and pixel_size. If

fresnel is True, use the Fresnel approximation, if it is False, use the full propagator (don’t approximate the square
root). region is the diameter of the the wavefront area which is capable of interference. If apply_phase_factor
is True, apply the phase factor defined by Fresnel approximation. If mollified is True the aliased frequencies
are suppressed. If command queue is specified, execute the kernel on it. If block is True, wait for the kernel to
finish.

syris.physics.energy_to_wavelength (energy)
Convert energy [eV-like] to wavelength [m].

syris.physics.is_wavefield_sampling_ ok (wavefield_exponent, queue=None, out=None)
Check the sampling of the wavefield_exponent. Use OpenCL queue and out array. Return True if the sampling
is OK, False otherwise.

syris.physics.propagate (samples, shape, energies, distance, pixel_size, region=None, ap-
ply_phase_factor=False, mollified=True, detector=None, offset=None,

queue=None, out=None, t=None, check=True, block=False)
Propagate samples with shape as (y, X) which are syris.opticalelements.OpticalElement in-

stances at energies to distance. Use pixel_size, limit coherence to region, apply_phase_factor is as by the
Fresnel approximation phase factor, offset is the sample offset. gqueue an OpenCL command queue, out a Py-
OpenCL Array. If block is True, wait for the kernels to finish. If check is True, check the transmission function
sampling.

syris.physics.ref_index to_attenuation_coeff (ref_index, lam)
Convert refractive index to the linear attenuation coefficient given by y = # based on given ref_index and
wavelength lam.

syris.physics.transfer (thickness, refractive_index, wavelength, exponent=False, queue=None,

out=None, check=True, block=False)
Transfer thickness (can be either a numpy or pyopencl array) with refractive_index and given wavelength. If

exponent is True, compute the exponent of the function without applying the wavenumber. Use command queue
for computation and out pyopencl array. If block is True, wait for the kernel to finish. If check is True, the
function is checked for aliasing artefacts. Returned out array is different from the input one because of the
pyopencl.cimath behavior.

syris.physics.transfer_many (objects, shape, pixel_size, energy, exponent=False, offset=None,

queue=None, out=None, t=None, check=True, block=False)
Compute transmission from more objects. If exponent is True, compute only the exponent, if it is False, evaluate

the exponent. Use shape (y, X), pixel_size, energy, offset as (y, x), OpenCL command queue, out array, time ¢,
check the sampling if check is True and wait for OpenCL kernels if block is True. Returned out array is different
from the input one because of the pyopencl.clmath behavior.

syris.physics.wavelength_to_energy (wavelength)
Convert wavelength [m-like] to energy [eV].

1.8 Experiments

Synchrotron radiation imaging experiments base module.

class syris.experiments.Experiment (samples, source, detector, propagation_distance, ener-

gies)
A virtual synchrotron experiment base class.

1.8. Experiments 9

Syris Documentation

compute_intensity (t_0,t_I, shape, pixel_size, queue=None, block=False)
Compute intensity between times ¢_0 and 7_1.

get_next_time (¢, pixel_size)
Get next time from ¢ for all the samples.

make_sequence (f_start, t_end, shape=None, shot_noise=True, amplifier_noise=True,
source_blur=True, queue=None)
Make images between times ¢_start and t_end.

make_source_blur (shape, pixel_size, queue=None, block=False)
Make geometrical source blurring kernel with shape (y, x) size and pixel_size. Use OpenCL command
queue and block if True.

time
Total time of all samples.

1.9 Bodies

Bodies are used to model physical objects like samples, optical elements like gratings, etc. A MovableBody can be
moved by using an instance of syris.geometry. Trajectory. Itis also possible to move it by manipulating
its transformation matrix directly. CompositeBody can contain multiple bodies in order to model complex motion
patterns, e.g. a robotic arm.

1.9.1 Base

A base module for pysical bodies, which are optical elements having spatial extent.

class syris.bodies.base.Body (material=None)
An abstract body class with a material, whichis a syris.materials.Material instance.

project (shape, pixel_size, offset=None, t=None, queue=None, out=None, block=False)
Project thickness at time ¢ to the image plane of size shape which is either 1D and is extended to (n, n) or
is 2D as HxW. pixel_size is the point size, also either 1D or 2D. offset is the physical spatial body offset
as (v, x). queue is an OpenCL command queue, out is the pyopencl array used for result. If block is True,
wait for the kernel to finish.

class syris.bodies.base.CompositeBody (trajectory, orientation=array([0., 1., 0.]) * dimen-

) o sionless, bodies=None)
Class representing a body consisting of more sub-bodies. A composite body can be thought of as a tree structure

with children representing another bodies.

add (body)
Add a body body.

all bodies
All bodies inside this body recursively.

bind_trajectory (pixel_size)
Bind trajectory for pixel_size.

bodies
All bodies which are inside this composite body.

bounding box
Get bounding box around all the bodies inside.

10 Chapter 1. Application Programming Interface

Syris Documentation

clear transformation ()
Clear all transformations.

direct_primitive_bodies
Return primitive bodies on the level immediately after this body’s level.

furthest_point
Furthest point is 0 for composite object.

get_distance (r 0,t_1)
Return the translational and rotational travelled distance in time interval ¢_0, ¢_1.

get_maximum_dt (pixel_size)
Get the maximum delta time for which the body will not move more than pixel_size divided by the number
of bodies because their movement can sum up constructively.

get_next_time (¢_0, pixel_size, xtol=1e-12)
Get next time at which the body will have traveled pixel_size, the starting time is ¢_0. xtol is the absolute
tolerance for bisection passed to scipy.optimize.bisect ().

move (abs_time, clear=True)
Move to a position of the body in time abs_time. If clear is true clear the transformation matrix first.

moved (t_0, t_I, pixel_size)
Return True if the body moves more than pixel_size in time interval ¢ 0, t_I.

remove (body)
Remove body body.

remove_all ()
Remove all sub-bodies.

restore_transformation_matrices()
Restore transformation matrices of all bodies.

rotate (angle, vec, shift=None)
Rotate the body by angle around vector vec, where shift is the translation which takes place before the
rotation and -shift takes place afterward, resulting in the transformation TRTA-1. Sub-bodies are rotated
with respect to their relative position to the composite body.

save_transformation matrices ()
Save transformation matrices of all bodies and return them in a dictionary {body: transform_matrix }.

time
The total trajectory time of the body and all its subbodies.

translate (vec)
Translate all sub-bodies by a vector vec.

class syris.bodies.base.MovableBody (trajectory, material=None, orientation=array([0., 1.,
0.]) * dimensionless, cache_projection=True)
Class representing a movable body.

apply_transformation (trans_matrix)
Apply transformation given by the transformation matrix trans_matrix on the current transformation ma-

trix.

bind_trajectory (pixel_size)
Bind trajectory for pixel_size.

bounding box
Bounding box defining the extent of the body.

1.9. Bodies 11

Syris Documentation

cache_projection
Whether or not projection cache is being used.

center
Center.

clear transformation /()
Clear all transformations.

furthest_point
The furthest point from body’s center with respect to the scaling factor of the body.

get_distance (t 0,¢ 1)
Return the maximum principal axes translational and rotational travelled distance in time interval z_0, ¢_1.

get_maximum_dt (pixel_size)
Get the maximum delta time for which the body will not move more than pixel_size between any two time
points.

get_next_time (7_0, pixel_size)
Get time from 7_0 when the body will have travelled more than pixel_size.

get_rescaled transform matrix (units, coeff=1)
The last column of the transformation matrix holds displacement information has SI units, convert those
to the units specified, apply coefficient coeff and return a copy of the matrix.

last_position
Last position.

move (abs_time, clear=True)
Move to a position of the body in time abs_time. If clear is true clear the transformation matrix first.

moved (t_0, t_1, pixel_size, bind=True)
Return True if the body moves more than pixel_size in time interval ¢_0, ¢_I. If bind is True bind the
trajectory to the specified pixel_size, otherwise use the trajectory as-is to compute an estimate.

position
Current position.

project (shape, pixel_size, offset=None, t=None, queue=None, out=None, block=False)
Project thickness at time ¢ (if it is None no transformation is applied) to the image plane of size shape
which is either 1D and is extended to (n, n) or is 2D as HxW. pixel_size is the point size, also either 1D
or 2D. offset is the physical spatial body offset as (y, x). queue is an OpenCL command queue, out is the
pyopencl array used for result. If block is True, wait for the kernel to finish.

rotate (angle, axis, shift=None)
Rotate the body by angle around vector vec, where shift is the translation which takes place before the
rotation and -shift takes place afterward, resulting in the transformation TRT”-1.

translate (vec)
Translate the body by a vector vec.

update_projection_cache (1=None, shape=None, pixel_size=None, offset=None, projec-

tion=None)
Update projection cache with time t, shape, pixel_size, offset and projection.

1.9.2 Simple Bodies

A static body.

12 Chapter 1. Application Programming Interface

Syris Documentation

class syris.bodies.simple.StaticBody (thickness, pixel_size, material=None, queue=None)
A static body is defined by its projected thickness, which is a quantity and it is always converted to meters, thus
the project () method always returns the projection in meters. pixel_size is the pixel size of the thickness
and materialisa syris.materials.Material instance. Use OpenCL command queue.

get_next_time (7_0, distance)
A simple body doesn’t move, this function returns infinity.

syris.bodies.simple.make_grid (n, period, width=array(l.) * m, thickness=array(l.) * m,

pixel_size=array(1.) * m, material=None, queue=None)
Make a rectangluar grid with shape (n, n), the bars are spaced period and are width in diameter. thickness is the

projected thickness and pixel_size, material and queue, which is an OpenCL command queue, are used to create
StaticBody.

syris.bodies.simple.make_sphere (n, radius, pixel_size=array(l.) * m, material=None,

queue=None)
Make a sphere with image shape (n, n), radius and pixel_size. Sphere center is in n / 2 + 0.5, which means

between two adjacent pixels. pixel_size, material and queue, which is an OpenCL command queue, are used to
create StaticBody.

1.9.3 Isosurfaces

Bodies based on isosurfaces.

class syris.bodies.isosurfaces.MetaBall (frajectory, radius, material=None, orienta-

tion=array([0., 1., 0.]) * dimensionless)
“Metaball bodies are smooth blobs formed by summing density functions representing particular bodies.

bounding box
Bounding box of the metaball.

furthest_point
Furthest point is twice the radius because of the influence region of the metaball.

get_transform_ const ()
Precompute the transformation constant which does not change for x,y position.

pack ()
Pack the body into a structure suitable for OpenCL kernels. Packed units are in meters.

class syris.bodies.isosurfaces.MetaBalls (trajectory, metaballs, orientation=array([0., 1.,

0.]) * dimensionless)
Composite body composed of metaballs.

syris.bodies.isosurfaces.get_format_string (string)
Get string in single or double precision floating point number format.

syris.bodies.isosurfaces.get_moved_ groups (bodies,t 0,t_I, distance)
Filter only bodies which truly move in the time interval ¢_0, ¢_I more than distance. Return a set of moved
groups, where a group is defined by the last composite body which holds only primitive bodies. If a primitive
body is in the bodies it is included without further testing because if it didn’t move it wouldn’t be in the list.

syris.bodies.isosurfaces.project_metaballs (metaballs, shape, pixel_size, offset=None,

queue=None, out=None, block=False)
Project a list of MetaBall on an image plane with shape, pixel_size. offset is the physical spatial body offset

as (y, x). Use OpenCL gueue and out pyopencl Array instance for returning the result. If block is True, wait for
the kernel to finish.

1.9. Bodies 13

Syris Documentation

syris.bodies.isosurfaces.project_metaballs_naive (metaballs, shape, pixel_size,
offset=None, z_step=None,
queue=None, out=None,

block=False)
Project a list of MetaBall on an image plane with shape, pixel_size. z_step is the physical step in the z-

dimension, if not specified it is the same as pixel_size. offset is the physical spatial body offset as (y, x). Use
OpenCL queue and out pyopencl Array instance for returning the result. If block is True, wait for the kernel to
finish.

1.9.4 Meshes

Bodies made from mesh.

class syris.bodies.mesh.Mesh (triangles, trajectory, material=None, orientation=array([0., 1., 0.])

* dimensionless, iterations=1, center="bbox’)
Rigid Body based on triangles which form a polygon mesh. The triangles are a 2D array with shape (3, N),

where N / 3 is the number of triangles. One polygon is formed by three consecutive triangles, e.g. when:

triangles = [[Ax, Bx, Cx]
(Ay, By, Cyl
[Az, Bz, Cz]]

then A, B, C are one triangle’s points. iterations are the number of iterations within one pixel which try to find
an intersection. center determines the center of the local coordinates, it can be one of None, ‘bbox’, ‘gravity’ or
a (x, y, z) tuple specifying an arbitrary point.

areas
Triangle areas.

bounding_box
Bounding box implementation.

center_of_ bbox
The bounding box center.

center_of gravity
Get body’s center of gravity as (X, y, z).

compute_slices (shape, pixel_size, queue=None, out=None, offset=None)
Compute slices with shape as (z, y, x), pixel_size. Use queue and out for outuput. Offset is the starting
point offset as (x, y, z).

diff
Smallest and greatest difference between all mesh points in all three dimensions. Returns ((min(dx),
max(dx)), (min(dy), max(dy)), (min(dz), max(dz))).

extrema
Mesh extrema as ((x_min, X_max), (y_min, y_max), (z_min, Z_max)).

furthest_point
Furthest point from the center.

get_degenerate_triangles (eps=array(0.001) * deg)
Get triangles which are close to be parallel with the ray in z-direction based on the current transformation
matrix. eps is the tolerance for the angle between a triangle and the ray to be still considered parallel.

max_triangle_x diff
Get the greatest x-distance between triangle vertices.

14

Chapter 1. Application Programming Interface

Syris Documentation

normals
Triangle normals.

num_triangles
Number of triangles in the mesh.

sort ()
Sort triangles based on the greatest x-coordinate in an ascending order. Also sort vertices inside the tri-
angles so that the greatest one is the last one, however, the position of the two remaining ones is not
sorted.

transform()
Apply transformation matrix and return the resulting triangles.

triangles
Return current triangle mesh.

vectors
The triangles as B - A and C - A vectors where A, B, C are the triangle vertices. The result is transposed,
i.e. axis 1 are x, y, z coordinates.

syris.bodies.mesh.make_cube ()
Create a cube triangle mesh from -1 to 1 m in all dimensions.

syris.bodies.mesh.read_blender_obj (filename, objects=None)
Read blender wavefront filename, extract only objects which are object indices.

1.10 Devices

Lenses used in experiments.

class syris.devices.lenses.Lens (magnification, na=None, f_number=None, fo-
cal_length=None, transmission_eff=1, sigma=None)
Class holding lenses.

numerical_aperture
Lens numerical aperture.

Cameras used by experiments.

class syris.devices.cameras.Camera (pixel_size, gain, dark_current, amplifier_sigma,
bits_per_pixel, shape, quantum_efficiencies=None,
wavelengths=None, exp_time=array(l.) *s, fps=array(1.)

* /s, dtype=<class 'numpy.uint16’>)
Base class representing a camera.

get_image (photons, shot_noise=True, amplifier_noise=True, psf=True, queue=None)
Get digital counts image from incoming photons. The resulting image is based on the incoming photons
and dark current. We apply noise based on EMVA 1288 standard according to which the variance 05 =
K?(0? +03) + 02, where K is the system gain, o2 is the poisson- distributed shot noise variance, o is
the normal distributed electronics noise variance and 03 is the quantization noise variance. If shot_noise is
False don’t apply it. If amplifier_noise is False don’t apply it as well. If psf is False don’t apply the point

spread function.

get_quantum_efficiency (wavelength)
Get quantum efficiency [dimensionless] at wavelength.

syris.devices.cameras.is_fps_feasible (fps, exp_time)
Determine whether frame rate given by fps can be accomplished with the exposure time exp_time. It is only
possible to set frame rates for which exposure time <=1/ fps.

1.10. Devices 15

Syris Documentation

syris.devices.cameras.make_pco_dimax ()
Make a pco.dimax camera.

Module for beam filters which cause light attenuation. Filters are assumed to be homogeneous, thus no phase change
effects are introduced when a wavefield passes through them.

class syris.devices.filters.Filter
Beam frequency filter.

get_next_time (7_0, distance)
A filter doesn’t move, this function returns infinity.

class syris.devices.filters.GaussianFilter (energies, center, sigma,

peak_transmission=1)
Gaussian beam filter.

get_next_time (7_0, distance)
A filter doesn’t move, this function returns infinity.

class syris.devices.filters.MaterialFilter (thickness, material)
Beam frequency filter.

get_attenuation (energy)
Get attenuation at energy.

get_next_time (7_0, distance)
A filter doesn’t move, this function returns infinity.

class syris.devices.filters.Scintillator (thickness, material, light_yields, energies, lumi-

nescence, wavelengths, optical_ref _index)
Scintillator emits visible light when it is irradiated by X-rays.

d_wavelength
Wavelength spacing.

get_conversion_factor (energy)
Get the conversion factor to convert X-ray photons to visible light photons [dimensionless].

get_light_yield (energy)
Get light yield at energy [1 / keV].

get_luminescence (wavelength)
Get luminescence at wavelength [1 / nm].

wavelengths
Wavelengths for which the emission is defined.

Detector composed of a scintillator, a lens and a camera.

class syris.devices.detectors.Detector (scintillator, lens, camera)
A detector consisting of a camera and an objective lens.

convert (photons, energy, wavelengths=None)
Convert X-ray photons at energy to visible light photons with wavelengths.

get_visible_attenuation (wavelengths=None)
Get the attenuation coefficient for visible light wavelengths [dimensionless].

X-ray sources at synchrotrons. They provide X-ray photons used for imaging. Synchrotron radiation sources provide
high photon flux of photons with different energies, which form a spectrum characteristic for a given source type.

16 Chapter 1. Application Programming Interface

Syris Documentation

class syris.devices.sources.BendingMagnet (electron_energy, el_current, magnetic_field,
sample_distance, dE, size, pixel_size, trajectory,
profile_approx=True, phase_profile="plane’)
Bending magnet X-ray source.

critical_energy
Critical energy of the source is defined as .. math:

\epsilon_c [keV] = 0.665 E"2 [GeV] BI[T]

gama
E
mec?

get_ £lux (photon_energy, vertical_angle, pixel_size)
Get the photon flux coming from the source consisting of photons with photon_energy and get it at the
vertical observation angle vertical_angle.

get_next_time (7_0, distance)
Get the next time when the source will have moved more than distance.

class syris.devices.sources.FixedSpectrumSource (energies, flux, sample_distance,
size, trajectory, pixel_size=None,
phase_profile="plane’)

get_ £lux (photon_energy, vertical_angle, pixel_size)
Get linearly interpolated flux at photon_energy.

class syris.devices.sources.Wiggler (electron_energy, el_current, magnetic_field,
sample_distance, dE, size, pixel_size, tra-
Jectory, num_periods, profile_approx=True,

phase_profile="plane’)
Wiggler source.

get_flux (photon_energy, vertical_angle, pixel_size)
Get the photon flux coming from the source consisting of photons with photon_energy and get it at the
vertical observation angle vertical_angle.

class syris.devices.sources.XRaySource (sample_distance, size, trajectory,
phase_profile="plane’)

apply_blur (intensity, distance, pixel_size, queue=None, block=False)
Apply source blur based on van Cittert-Zernike theorem at distance.

get_next_time (7_0, distance)
Get the next time when the source will have moved more than distance.

exception syris.devices.sources.XRaySourceError
X-ray source related exceptions.

syris.devices.sources.make_topotomo (dE=None, trajectory=None, pixel_size=None,

ring_current=array(200.) * mA)
Make the TopoTomo bending magnet source located at ANKA, KIT. Use dE for energy spacing (1 keV if not

specified), trajectory for simulating beam fluctuations. If it is None a (1024, 1024) window is used with the
beam center in the middle and no fluctuations. pixel_size specifies the pixel spacing between the window points,
if not specified 1 um is used. ring_current is the storage ring electric current.

1.11 OpenCL GPU Utilities

Utility functions concerning GPU programming.

1.11. OpenCL GPU Utilities 17

Syris Documentation

syris.gpu.util.are_images_supported ()
Is the INTENSITYIFLOAT image format supported?

syris.gpu.util.cache (mem, shape, dtype, cache_type=1)
Cache a device memory object mem with shape and numpy data type dfype on host or device based on
cache_type.

syris.gpu.util.execute_profiled (function)
Execute a function which can be an OpenCL kernel or other OpenCL related function and profile it.

syris.gpu.util.get_all varconvolutions ()
Create all variable convolutions.

syris.gpu.util.get_array (data, queue=None)
Get pyopencl.array.Array from data which can be a numpy array, a pyopencl.array.Array or a pyopencl.Image.
queue is an OpenCL command queue.

syris.gpu.util.get_cache (buf)
Get a device memory object from cache buf, which can reside either on host or on device.

syris.gpu.util.get_command_queues (context, devices=None, queue_kwargs=None)
Create command queues for each of the devices within a specified context. If devices is None, they are obtained
from context. queue_kwargs are passed to the CommandQueue constructor.

syris.gpu.util.get_cpu_platform()
Get any platform with CPUs.

syris.gpu.util.get_cuda_platform()
Get the NVIDIA CUDA platform if any.

syris.gpu.util.get_event_duration (event, start=4738, stop=4739)
Get OpenCL event duration. start and stop define the OpenCL timer start and stop.

syris.gpu.util.get_gpu_platform()
Get any platform with GPUs.

syris.gpu.util.get_host (data, queue=None)
Get data as numpy.ndarray.

syris.gpu.util.get_image (data, access=4, queue=None)
Get pyopenclImage from data which can be a numpy array, a pyopenclarray.Array or a py-
opencl.Image. The image channel order is pyopencl.channel orderINTENSITY and channel type
is pyopencl.channel_type.FLOAT. access is either pyopencl.mem_flags. READ_ONLY or py-
opencl.mem_flags. WRITE_ONLY. gueue is an OpenCL command queue.

syris.gpu.util.get_intel_platform()
Get the Intel platform if any.

syris.gpu.util.get_metaobjects_source ()
Get source string for metaobjects creation.

syris.gpu.util.get_platform (name)
Get the first OpenCL platform which contains name as its substring.

syris.gpu.util.get_platform by device_type (device_type)
Get platform with specific device type (CPU, GPU, ...).

syris.gpu.util.get_precision_header ()
Return single or double precision vfloat definitions header.

syris.gpu.util.get_program (src)
Create and build an OpenCL program from source string src.

18 Chapter 1. Application Programming Interface

Syris Documentation

syris.gpu.util.get_source (file_names, precision_sensitive=True)
Get source by concatenating files from file_names list and apply single or double precision parametrization if
precision_sensitive is True.

syris.gpu.util.get_varconvolution_source (name, header=", inputs=", init=", com-
pute_outer=", compute_inner="weight = 1.0;’,

after=", cplx=False, only_kernel=False)
Create a shift dependent convolution kernel function with name. header is an OpenCL code which is

placed in the front of the source before the kernel function. inputs are additional kernel inputs (see
opencl/varconvolution.in for the fixed ones), init is the kernel initialization code, compute_outer is called at
every iteration of the outer (y) loop, compute_inner is called in the inner (x) loop. after is the code after both
loops. If cplx is True, the complex version of the kernel is used. Pseudo-code of the OpenCL source for the
noncomplex version will look like this:

rheaderx*

kernel void xnamex (read_only image2d_t input,
global vfloat =*output,
const sampler_t sampler,
int2 window, =*inputsx)

int idx = get_global_id (0);

int idy = get_global_id (1);

int width = get_global_size (0);
int i, j, tx, ty, imx, imy;

vfloat value, weight, result = 0.0;
+init*
for (j = 0; j < window.y; J++) {

ty = window.y - j - 1;
imy = idy + j — window.y / 2;
compute_outerx

for (i = 0; i < window.x; i++) {
imx = idx + 1 — window.x / 2;
value = read_imagef (input, sampler, (int2) (imx, imy)) .x;
tx = window.x - 1 - 1;

~compute_inner«
result += value » weight;

~afterx

output [idy * width + idx] = result;

The complex version uses two inputs, input_real and input_imag which are also image2d_t instances. com-
pute_inner must set the weight variable in order to apply the convolution kernel weight.

syris.gpu.util.get_varconvolve_disk (normalized=True, smooth=True, only_kernel=False)
Create variable circlular kernel convolution, kernel sum is 1 if normalized is True, if smooth is True smooth out
sharp edges of the disk. If only_kernel is True only the kernel is returned.

syris.gpu.util.get_varconvolve_gauss (normalized=True, window_fwnm=1000,

only_kernel=False)
Create variable Gaussian convolution. The kernel sum is 1 if normalized is True, window is computed automat-

ically for every X, y position in the original image based on the sigma at x, y and window_fwnm as 2 * sqrt(2 *
log(window_fwnm)) * sigma. If only_kernel is True only the kernel is returned.

1.11. OpenCL GPU Utilities 19

Syris Documentation

syris.gpu.util.get_varconvolve_propagator (only_kernel=False)
Create the variable propagator convolution. If only_kernel is True only the kernel is returned.

syris.gpu.util.init_programs ()
Initialize all OpenCL kernels needed by syris.

syris.gpu.util.make_opencl_defaults (platform_name=None, device_type=None, de-
vice_index=None, profiling=True)
Create default OpenCL context from platform_name and a command queue based on device_index to the devices
list. If None, all devices are used in the context. If platform_name is not specified and device_type is, get a
platform which has devices of that type. If profiling is True enable it.

syris.gpu.util.make_vcomplex (value)
Make complex value for OpenCL based on the set floating point precision.

syris.gpu.util.qmap (func, items, queues=None, args=(), kwargs=None)

Apply func to items on multiple command queues. The function func should block until the execution on a
device is finished, otherwise the command queue which is assigned to it might return to the pool of usable
resources too soon and stall execution. Consider using another mechanism if func is a kernel, i.e. the multi gpu
execution might be realized without threading, which is used here. func is a callable with signature func(item,
queue, args, **kwargs) where item is an item to be processed and queue is the OpenCL command queue to be
used. *queues are the command queues to be used for computation, if not specified, all the default ones are
used. args is a list and kwargs a dictionary, both passed to func.

20 Chapter 1. Application Programming Interface

CHAPTER 2

Usage

2.1 Profiling GPU Code

Module for profiling OpenCL GPU code execution.

class syris.profiling.DummyProfiler
A profiler which does nothing for saving time.

add (event, func_name="")
Does nothing with input arguments.

class syris.profiling.ProfileReconstructor (file_name, str_units)
Profile reconstructor which handles the profiling file created by Profiler.

get_data (arttr)
Get data in a dictionary aggregated to a multidictionary. attr is a record attribute which will serve as a key
to the top level of result dictionary. Return a dictionary in form {attr: {event_id: Event}}.

class syris.profiling.Profiler (queues, file_name)
An OpenCL GPU code PROFILER.

add (event, func_name="")
Add an OpenCL event and function with name func_name into the PROFILER’s queue.

run ()
Run in a separate thread and serve the incoming events.

shutdown ()
Wait for all events to finish and then stop the PROFILER loop.

syris.profiling.plot (data, attribute, states, file_units, out_units, start_from=0,
stop_at=1.7976931348623157e+308, delta=0.0, only_averages=False)
Plot the profiling information, where

* data - a dictionary in the form {id: {event_id: values}}

e attribute - (event_id, device_id, queue_id)

21

Syris Documentation

* states - OpenCL Event states to use as beginning and end
e file_units - units used in the profiling file

* out_units - units used for output

e start_from - plot events started after start_from

* stop_at - plot events started before stop_at

* delta - plot only events with duration >= delta

* only_averages - outputs only the average timings

2.2 Examples

In this section we describe the examples which come directly with syris in order to demonstrate its usage.

2.2.1 Composite body

composite_body.py

Composite body example

Here we show how to use a composite body in order to move groups of objects around. This is possible in two ways,
either manually by translating and rotating the composite body, or automatically by using a trajectory.

Manual

This example shows manual rotation of a grid of spheres with different radii around one of the spheres. CompositeOb-
ject is used to simplify the transformations workflow.

Trajectory

This example has the same result as the previous one but achieved by trajectories.

Subtrajectories

This example shows a circular global motion followed by the whole composite body and its sub-bodies, which are
cuboids following their own local linear trajectories. The sub-bodies further move along their own trajectories.

2.2.2 Edge enhancement

edge_enhancement.py

Edge enhancement caused by free-space propagation. Control the accuracy by the —supersampling option. If this value
is too low (1), the propagators are not resolved correctly and the resulting images contain artefacts. Increase this value
to e.g. 4 and you will see how the propagators and the results change.

22 Chapter 2. Usage

Syris Documentation

2.2.3 Energy Filter

energy_filter.py

Energy filter based on Gaussian profile.

2.2.4 Experiment

experiment.py
Experiment example.

examples.experiment .main ()
Parse command line arguments and execute one of the experiments.

examples.experiment .make_devices (n, energies, camera=None, highspeed=True, scintilla-

tor=None)
Create devices with image shape (n, n), X-ray energies, camera and use the high speed setup if highspeed is

True.

2.2.5 Fresnel Propagation

propagator.py
Show different propagators.

examples.propagator.main ()

2.2.6 Fresnel Propagation Accuracy

fresnel.py

Comparison of analytical and numerical Fresnel diffraction pattern. The object is a square aperture from Introduction
to Fourier Optics by J. W. Goodmann, 2nd edition.

examples.fresnel.crop_to_aperture (image, w, ps)
Crop image to 2x aperture width.

examples.fresnel.main ()
Main function.

examples.fresnel.parse_args ()
Parse command line arguments.

examples.fresnel.propagate_analytically (n, w, ps, d, lam)
Propagate square aperture analytically.

examples.fresnel.propagate_numerically (n, w, ps, d, lam)
Propagate square aperture numerically.

2.2.7 Mesh Bodies

mesh.py
Mesh projection and slice.

examples.mesh.main ()
Main function.

2.2. Examples 23

Syris Documentation

examples.mesh.parse_args ()
Parse command line arguments.

2.2.8 Laminography of Samples Defined by Meshes

mesh_scan.py
Laminography data set generation with mesh geometry.

examples.mesh_scan.log_attributes (0bj)
Log object obj attributes.

examples.mesh_scan.make_ground_truth (args, shape, mesh)
Shape is (y, X), so the total number of slices is y.

examples.mesh_scan.scan (shape, ps, axis, mesh, angles, prefix, lamino_angle=array(45.) * deg, in-

dex=0, num_devices=1, shift_coeff=10000.0, ss=1)
Make a scan of tomographic angles. shift_coeff is the coefficient multiplied by pixel size which shifts the

triangles to get rid of faulty pixels.

2.2.9 Metaballs

metaballs.py

2.2.10 Paganin Phase Retrieval

paganin.py
Show forward phase contrast simulation and backward phase retrieval using the Paganin method[1].

[1] Paganin, David, et al. “Simultaneous phase and amplitude extraction from a single defocused image of a homoge-
neous object.” Journal of microscopy 206.1 (2002): 33-40.

2.2.11 Platform Benchmark

speed.py
Code speed on a specific platform.

2.2.12 Multi GPU Speedup

multigpu.py

Show multi-device speedup on a problem of size n x m”k, where n is the number of pixels to compute, m is the base
number of operations per pixel powered to k.

2.2.13 X-ray Source

source.py

An X-ray source example.

24 Chapter 2. Usage

Syris Documentation

2.2.14 X-ray Source Blur

source_blur.py

Source blur example.

2.2.15 Simple

simple.py

Simple propagation example.

2.2.16 Tomographic Rotation

tomographic_rotation.py

Example of a trajectory which simulates tomographic rotation.

2.2.17 4D Tomography

tomography_4D.py

Simple 4D tomography example. Two cubes rotate around the tomographic rotation axis and at the same time move
along y-axis. The total vertical displacement between rotation start and end is the cube edge. This leads to an “incom-
plete” data set with increasingly more missing data in the sinogram space from top to bottom. There is exactly one
complete sinogram, the middle one.

2.2.18 Trajectory

trajectory.py
Trajectory and motion example.

examples.trajectory.create_sample (n, ps, radius=None, velocity=None, x_ends=None,

y_ends=None)
Crete a metaball with a sine trajectory.

examples.trajectory.main ()

examples.trajectory.make_circle (n=128, axis='z’, overall_angle=None, phase_shift=None)

(3N RS

Axis specifies the axis of rotation, which can be ‘x’, ‘y’ or ‘z’.

examples.trajectory.parse_args ()
Parse command line arguments.

2.2.19 Transformation Order

transformation.py
Demonstrates the order of transformations.

examples.transformation.main ()
Script execution.

examples.transformation.print_rounded (vector, decimals=2)
Print a roundded version of vector.

2.2. Examples 25

Syris Documentation

examples.transformation.transform (point=array([l., 0., 0.]) * m, x_rot=array(90.) * deg,

y_rot=array(90.) * deg, z_rot=array(0.) * deg)
Transform point by a series of rotations, x_rot around x axis and so on for y_rot and z_rot.

2.2.20 Transmission Function Sampling

transmission_function_sampling.py

Aliasing of the transmission function of a wedge which projection is computed as f(x, y) = x. Delta is chosen in such
a way that it causes phase shift between two adjacent pixels 2Pi in case of no supersampling. Thus, The transmission
function of the wedge along x has phase 0, 2Pi, 4Pi, ..., which is lost due to insufficient pixel spacing in case of no
supersampling.

The used material is a pure phase material, i.e. beta = 0. The results are the real part of the T(x, y), which is cos(-2 Pi
/lambda x delta).

2.2.21 Linear Shift Dependent Convolution

varconvolution.py

Example showing variable convolution.

26 Chapter 2. Usage

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

27

Syris Documentation

28 Chapter 3. Indices and tables

Python Module Index

e

examples
examples
examples
examples
examples
examples
examples
examples
examples
examples
examples
examples
examples
examples
examples
examples
examples
examples
examples
examples

26
examples.

S

syris, 1

.composite_body, 22
.edge_enhancement, 22
.energy_filter,23
.experiment, 23
.fresnel, 23

.mesh, 23

.mesh_scan, 24
.metaballs, 24
.multigpu, 24

.paganin, 24
.propagator, 23
.simple, 25

.source, 24
.source_blur, 25
.speed, 24
.tomographic_rotation, 25
.tomography_4D, 25
.trajectory, 25
.transformation, 25
.transmission_function_sampling

varconvolution, 26

syris.bodies.base, 10
syris.bodies.isosurfaces, 13
syris.bodies.mesh, 14
syris.bodies.simple, 12
syris.config, |

syris.devices.cameras, 15
syris.devices.detectors, 16
syris.devices.filters, 16
syris.devices.lenses, 15

syris.devices.sources, 16

syris.experiments,9
syris.geometry, 4
syris.gpu.util, 17

syris.
syris.
syris.
syris.
syris.
syris.

imageprocessing, 2
materials, 6
math, 8
opticalelements, 7
physics, 8
profiling, 21

29

Syris Documentation

30 Python Module Index

Index

A

add () (syris.bodies.base.CompositeBody method), 10

add () (syris.profiling. DummyProfiler method), 21

add () (syris.profiling. Profiler method), 21

all_bodies (syris.bodies.base.CompositeBody at-
tribute), 10

angle () (in module syris.geometry), 5

apply_blur () (syris.devices.sources.XRaySource
method), 17

apply_transformation ()
(syris.bodies.base.MovableBody
11

are_images_supported ()
syris.gpu.util), 17

areas (syris.bodies.mesh.Mesh attribute), 14

average () (syris.imageprocessing.Tiler method), 2

B

BendingMagnet (class in syris.devices.sources), 16

bin_image () (in module syris.imageprocessing), 2

bind () (syris.geometry.Trajectory method), 4

bind_trajectory ()
(syris.bodies.base. CompositeBody method), 10

bind_trajectory ()
(syris.bodies.base.MovableBody
11

blur_with_gaussian () (in
syris.imageprocessing), 2

bodies (syris.bodies.base. CompositeBody attribute), 10

Body (class in syris.bodies.base), 10

bound (syris.geometry.Trajectory attribute), 4

bounding_box (syris.bodies.base.CompositeBody at-
tribute), 10

bounding_box (syris.bodies.base.MovableBody at-
tribute), 11

bounding_box (syris.bodies.isosurfaces.MetaBall at-
tribute), 13

bounding_box (syris.bodies.mesh.Mesh attribute), 14

BoundingBox (class in syris.geometry), 4

method),

(in module

method),

module

C

cache () (in module syris.gpu.util), 18

cache_projection (syris.bodies.base.MovableBody
attribute), 11

Camera (class in syris.devices.cameras), 15

center (syris.bodies.base.MovableBody attribute), 12

center_of_bbox (syris.bodies.mesh.Mesh attribute),
14

center_of_gravity
attribute), 14

clear_transformation ()
(syris.bodies.base. CompositeBody method), 10

clear_transformation ()
(syris.bodies.base.MovableBody
12

closest () (in module syris.geometry), 5

closest () (in module syris.math), 8

CompositeBody (class in syris.bodies.base), 10

compute_aliasing_limit () (in module
syris.physics), 8

compute_collection () (in module syris.physics),
8

(syris.bodies.mesh.Mesh

method),

compute_diffraction_angle () (in module
syris.physics), 8

compute_intensity ()
(syris.experiments.Experiment method),

9
compute_propagation_distance_limit () (in
module syris.physics), 8
compute_propagation_sampling () (in module
syris.physics), 8
compute_propagator () (in module syris.physics),

9

compute_slices() (syris.bodies.mesh.Mesh
method), 14

control_points (syris.geometry.Trajectory at-
tribute), 4

convert () (syris.devices.detectors.Detector method),
16

31

Syris Documentation

create_sample () (in module examples.trajectory),
25

critical_energqgy (syris.devices.sources.BendingMagnet

attribute), 17
crop () (in module syris.imageprocessing), 2

crop_to_aperture () (in module examples.fresnel),
23

D

d_wavelength
attribute), 16
decimate () (in module syris.imageprocessing), 2
derivative_fit () (in module syris.geometry), 5
Detector (class in syris.devices.detectors), 16
diff (syris.bodies.mesh.Mesh attribute), 14
difference_root () (in module syris.math), 8
direct_primitive_bodies
(syris.bodies.base. CompositeBody
11
DummyProfiler (class in syris.profiling), 21

E

energies (syris.materials.Material attribute), 6
energy_to_wavelength () (in
syris.physics), 9
examples.composite_body (module), 22
examples.edge_enhancement (module), 22
examples.energy_filter (module), 23
examples.experiment (module), 23
examples.fresnel (module), 23
examples.mesh (module), 23
examples.mesh_scan (module), 24
examples.metaballs (module), 24
examples.multigpu (module), 24
examples.paganin (module), 24
examples.propagator (module), 23
examples.simple (module), 25
examples.source (module), 24
examples.source_blur (module), 25
examples.speed (module), 24
examples.tomographic_rotation (module), 25
examples.tomography_4D (module), 25
examples.trajectory (module), 25
examples.transformation (module), 25
examples.transmission_function_sampling
(module), 26
examples.varconvolution (module), 26
execute_profiled() (in module syris.gpu.util), 18
Experiment (class in syris.experiments), 9
extrema (syris.bodies.mesh.Mesh attribute), 14

F

fft_2 () (in module syris.imageprocessing), 2
fftfreq() (in module syris.math), 8

(syris.devices.filters.Scintillator

attribute),

module

Filter (class in syris.devices.filters), 16

FixedSpectrumSource (class

syris.devices.sources), 17

furthest_point (syris.bodies.base.CompositeBody
attribute), 11

furthest_point (syris.bodies.base.MovableBody at-
tribute), 12

furthest_point (syris.bodies.isosurfaces.MetaBall
attribute), 13

furthest_point (syris.bodies.mesh.Mesh attribute),
14

furthest_point
tribute), 5

fwnm_to_sigma () (in module syris.math), 8

G

gama (syris.devices.sources.BendingMagnet attribute),
17

GaussianFilter (class in syris.devices.filters), 16

get_all_varconvolutions () (in module
syris.gpu.util), 18

get_array () (in module syris.gpu.util), 18

get_attenuation ()
(syris.devices.filters.MaterialFilter method), 16

get_attenuation_coefficient ()
(syris.materials.Material method), 6

get_cache () (in module syris.gpu.util), 18

get_command_queues () (in module syris.gpu.util),
18

get_conversion_factor ()
(syris.devices.filters.Scintillator
16

get_cpu_platform() (in module syris.gpu.util), 18

get_cuda_platform() (in module syris.gpu.util),

in

(syris.geometry.Trajectory at-

method),

18
get_data() (syris.profiling. ProfileReconstructor
method), 21

get_degenerate_triangles()
(syris.bodies.mesh.Mesh method), 14
get_direction () (syris.geometry.Trajectory

method), 5

get_distance () (syris.bodies.base.CompositeBody
method), 11

get_distance () (syris.bodies.base.MovableBody
method), 12

get_distances () (syris.geometry.Trajectory
method), 5

get_event_duration () (in module syris.gpu.util),
18

get_flux() (syris.devices.sources.BendingMagnet
method), 17

get_flux () (syris.devices.sources.FixedSpectrumSource
method), 17

32

Index

Syris Documentation

get_flux()
17
get_format_string() (in
syris.bodies.isosurfaces), 13
get_gauss_2d () (in module syris.imageprocessing),
2
get_gpu_platform() (in module syris.gpu.util), 18
get_host () (in module syris.gpu.util), 18
get_image () (in module syris.gpu.util), 18
get_image () (syris.devices.cameras.Camera

(syris.devices.sources.Wiggler method),

module

method), 15
get_intel_platform() (in module syris.gpu.util),
18

get_light_yield()

(syris.devices.filters.Scintillator method),
16

get_luminescence ()
(syris.devices.filters.Scintillator method),

16
get_max () (syris.geometry.BoundingBox method), 4
get_maximum_dt () (syris.bodies.base.CompositeBody
method), 11
get_maximum_dt () (syris.bodies.base.MovableBody
method), 12
get_maximum_dt ()
method), 5
get_maximum_du ()
method), 5
get_metaobjects_source ()
syris.gpu.util), 18
get_min () (syris.geometry.BoundingBox method), 4
get_moved_groups () (in module
syris.bodies.isosurfaces), 13
get_next_time () (syris.bodies.base.CompositeBody
method), 11
get_next_time ()
method), 12
get_next_time ()
method), 13
get_next_time ()
method), 16
get_next_time () (syris.devices.filters.GaussianFilter
method), 16
get_next_time () (syris.devices.filters.MaterialFilter
method), 16

(syris.geometry.Trajectory
(syris.geometry.Trajectory

(in module

(syris.bodies.base.MovableBody
(syris.bodies.simple.StaticBody

(syris.devices.filters.Filter

method), 7
get_num_tiles () (in
syris.imageprocessing), 2
get_parameter () (syris.geometry.Trajectory
method), 5
get_platform() (in module syris.gpu.util), 18
get_platform_by_device_type () (in module
syris.gpu.util), 18
get_point () (syris.geometry.Trajectory method), 5
get_precision_header () (in module
syris.gpu.util), 18
get_program () (in module syris.gpu.util), 18
get_projected_points ()
(syris.geometry.BoundingBox method), 4
get_quantum_efficiency ()
(syris.devices.cameras.Camera
15
get_refractive_index ()
(syris.materials.Material method), 6
get_rescaled_transform _matrix()
(syris.bodies.base.MovableBody
12
get_rotation_displacement ()
syris.geometry), 6
get_source () (in module syris.gpu.util), 18
get_surrounding_points () (in
syris.math), 8
get_transform_const ()
(syris.bodies.isosurfaces.MetaBall method), 13

module

method),

method),

(in module

module

get_varconvolution_source () (in module
syris.gpu.util), 19

get_varconvolve_disk () (in module
syris.gpu.util), 19

get_varconvolve_gauss () (in module

syris.gpu.util), 19
get_varconvolve_propagator ()
syris.gpu.util), 20
get_visible_attenuation ()
(syris.devices.detectors.Detector
16

(in module

method),

ifft_2 () (in module syris.imageprocessing), 2
infimum () (in module syris.math), 8
init () (in module syris), 1

get_next_time () (syris.devices.sources.BendingMagnetnit_logging () (in module syris.config), 1

method), 17
get_next_time () (syris.devices.sources.XRaySource
method), 17
get_next_time ()
method), 10
get_next_time ()
method), 5

(syris.experiments. Experiment

(syris.geometry.Trajectory

init_programs () (in module syris.gpu.util), 20

insert () (syris.imageprocessing.Tiler method), 2

interpolate_1d () (in module syris.geometry), 6

is_fps_feasible() (in module
syris.devices.cameras), 15

is_normalized () (in module syris.geometry), 6

is_single () (syris.config.Precision method), 1

get_next_time () (syris.opticalelements.OpticalElement

Index

33

Syris Documentation

is_wavefield_sampling_ok () (in module

syris.physics), 9

L

last_position (syris.bodies.base.MovableBody at-
tribute), 12

length (syris.geometry.Trajectory attribute), 5

length () (in module syris.geometry), 6

Lens (class in syris.devices.lenses), 15

log_attributes () (in module
ples.mesh_scan), 24

exam-

M

main () (in module examples.experiment), 23
main () (in module examples.fresnel), 23

main () (in module examples.mesh), 23

main () (in module examples.propagator), 23
main () (in module examples.trajectory), 25
main () (in module examples.transformation), 25

make_circle () (in module examples.trajectory), 25

make_cube () (in module syris.bodies.mesh), 15

make_devices () (in module examples.experiment),
23

make_fromfile () (in module syris.materials), 7

make_grid () (in module syris.bodies.simple), 13

make_ground_truth () (in module exam-
ples.mesh_scan), 24

make_henke () (in module syris.materials), 7

make_opencl_defaults () (in module
syris.gpu.util), 20

make_pco_dimax () (in module

syris.devices.cameras), 16
make_pmasf () (in module syris.materials), 7
make_points () (in module syris.geometry), 6
make_sequence () (syris.experiments. Experiment
method), 10
make_source_blur ()
(syris.experiments. Experiment
10
make_sphere () (in module syris.bodies.simple), 13
make_stepanov () (in module syris.materials), 7
make_tile offsets () (in module
syris.imageprocessing), 3
make_tiles () (in module syris.imageprocessing), 3
make_topotomo () (in module syris.devices.sources),
17
make_vcomplex () (in module syris.gpu.util), 20
match_range () (in module syris.math), 8
Material (class in syris.materials), 6
MaterialError, 7

method),

maximum_derivative_parameter () (in module
syris.geometry), 6

merge () (syris.geometry.BoundingBox method), 4

merge_tiles () (in module syris.imageprocessing), 3

Mesh (class in syris.bodies.mesh), 14

MetaBall (class in syris.bodies.isosurfaces), 13

MetaBalls (class in syris.bodies.isosurfaces), 13

MovableBody (class in syris.bodies.base), 11

move () (syris.bodies.base.CompositeBody method), 11

move () (syris.bodies.base.MovableBody method), 12

moved () (syris.bodies.base.CompositeBody method),
11

moved () (syris.bodies.base.MovableBody method), 12

N

name (syris.materials.Material attribute), 7
normalize () (in module syris.geometry), 6
normals (syris.bodies.mesh.Mesh attribute), 14
num_triangles (syris.bodies.mesh.Mesh attribute),

15
numerical_aperture (syris.devices.lenses.Lens at-
tribute), 15

O

OpenCL (class in syris.config), 1

OpticalElement (class in syris.opticalelements), 7
overlap () (in module syris.geometry), 6

overlaps () (syris.geometry.BoundingBox method), 4

P

pack () (syris.bodies.isosurfaces.MetaBall method), 13
pad () (in module syris.imageprocessing), 3
parse_args () (in module examples.fresnel), 23
parse_args () (in module examples.mesh), 23
parse_args () (in module examples.trajectory), 25
pixel_size (syris.geometry.Trajectory attribute), 5
plot () (in module syris.profiling), 21
points (syris.geometry.BoundingBox attribute), 4
points (syris.geometry. Trajectory attribute), 5
position (syris.bodies.base.MovableBody attribute),
12
Precision (class in syris.config), 1
print_rounded () (in
ples.transformation), 25
Profiler (class in syris.profiling), 21
ProfileReconstructor (class in syris.profiling),
21
project () (syris.bodies.base.Body method), 10
project () (syris.bodies.base.MovableBody method),
12

module exam-

MaterialFilter (class in syris.devices.filters), 16 project_metaballs () (in module
max_triangle_x_diff (syris.bodies.mesh.Mesh at- syris.bodies.isosurfaces), 13

tribute), 14 project_metaballs_naive () (in module
syris.bodies.isosurfaces), 13

34 Index

Syris Documentation

propagate () (in module syris.physics), 9

propagate_analytically () (in module exam-
ples.fresnel), 23

propagate_numerically ()
ples.fresnel), 23

(in module exam-

Q

amap () (in module syris.gpu.util), 20

R

read_blender_obj()
syris.bodies.mesh), 15

ref_index_to_attenuation_coeff () (in mod-
ule syris.physics), 9

refractive_indices (syris.materials.Material at-
tribute), 7

reinterpolate () (in module syris.geometry), 6

remove () (syris.bodies.base.CompositeBody method),
11

remove_all ()
method), 11

rescale () (in module syris.imageprocessing), 3

restore_transformation_matrices()
(syris.bodies.base. CompositeBody method), 11

result_tile_shape (syris.imageprocessing.Tiler
attribute), 2

roi (syris.geometry.BoundingBox attribute), 4

rotate () (in module syris.geometry), 6

rotate () (syris.bodies.base.CompositeBody method),
11

rotate () (syris.bodies.base.MovableBody method), 12

run () (syris.profiling. Profiler method), 21

S

save () (syris.materials.Material method), 7
save_transformation_matrices ()
(syris.bodies.base.CompositeBody method), 11
scale () (in module syris.geometry), 6
scan () (in module examples.mesh_scan), 24
Scintillator (class in syris.devices.filters), 16
set_precision () (syris.config.Precision method), |
shutdown () (syris.profiling. Profiler method), 21
sigma_to_fwnm () (in module syris.math), 8
sort () (syris.bodies.mesh.Mesh method), 15
StaticBody (class in syris.bodies.simple), 12
stationary (syris.geometry.Trajectory attribute), 5
supremun () (in module syris.math), 8
syris (module), 1

(in module

(syris.bodies.base. CompositeBody

syris.devices.detectors (module), 16
syris.devices.filters (module), 16
syris.devices.lenses (module), 15
syris.devices.sources (module), 16
syris.experiments (module), 9
syris.geometry (module), 4
syris.gpu.util (module), 17
syris.imageprocessing (module), 2
syris.materials (module), 6
syris.math (module), 8
syris.opticalelements (module), 7
syris.physics (module), 8
syris.profiling (module), 21

T

tile_indices (syris.imageprocessing.Tiler attribute),
2

tile_shape (syris.imageprocessing.Tiler attribute), 2

Tiler (class in syris.imageprocessing), 2

time (syris.bodies.base.CompositeBody attribute), 11

time (syris.experiments.Experiment attribute), 10

time (syris.geometry.Trajectory attribute), 5

time_tck (syris.geometry. Trajectory attribute), 5

times (syris.geometry. Trajectory attribute), 5

Trajectory (class in syris.geometry), 4

TrajectoryError,5

transfer () (in module syris.physics), 9

transfer () (syris.opticalelements.OpticalElement
method), 7

transfer_fourier ()
(syris.opticalelements.OpticalElement
method), 7

transfer_many () (in module syris.physics), 9

transform () (in module examples.transformation), 25

transform() (syris.bodies.mesh.Mesh method), 15

transform_vector () (in module syris.geometry), 6

translate () (in module syris.geometry), 6

translate () (syris.bodies.base. CompositeBody
method), 11

translate ()
method), 12

triangles (syris.bodies.mesh.Mesh attribute), 15

U

update_projection_cache ()
(syris.bodies.base.MovableBody
12

(syris.bodies.base.MovableBody

method),

\Y

syris.bodies.base (module), 10

syris.bodies.isosurfaces (module), 13 varconvolve () (in module syris.imageprocessing), 3
syris.bodies.mesh (module), 14 varconvolve_disk () (in module
syris.bodies.simple (module), 12 syris.imageprocessing), 3

syris.config (module), 1 varconvolve_gauss () (in module
syris.devices.cameras (module), 15 syris.imageprocessing), 3

Index 35

Syris Documentation

vectors (syris.bodies.mesh.Mesh attribute), 15

W

wavelength_to_energy () (in module
syris.physics), 9

wavelengths (syris.devices.filters.Scintillator at-
tribute), 16

Wiggler (class in syris.devices.sources), 17

X

XRaySource (class in syris.devices.sources), 17
XRaySourceError, 17

36

Index

	Application Programming Interface
	Syris Configuration
	Image Processing
	Geometry
	Materials
	Optical Elements
	Math
	Physics
	Experiments
	Bodies
	Devices
	OpenCL GPU Utilities

	Usage
	Profiling GPU Code
	Examples

	Indices and tables
	Python Module Index
	Index

